UNIT 7 – APPLICATIONS OF VECTORS

SUPPLEMENTARY REVIEW

1) Two forces of magnitude 27 N and 42 N act at an angle of 115° to each other. Determine the magnitude of the **equilibrant** and its direction with respect to the 27 N force.

2) A plane flies on a heading of 040° at a speed of 500 km/h. A wind blows **from** the south-east at 55 km/h. Calculate the magnitude and direction of the plane's groundspeed.

3) If
$$\vec{u} = (-1, 7)$$
 and $\vec{v} = (0, 6)$, find $-3\vec{u} \cdot (2\vec{v} - \vec{u})$.

- 4) Find the angle between the vectors (7, 5) and (4, -2).
- 5) Show that there is no value k such that the angle between the vectors (3, 4) and (0, k) is 60° .
- 6) For each of the following diagrams, draw $\vec{u} \downarrow \vec{v}$.

7) If $\vec{a} = (12, 4)$ and $\vec{b} = (1, -1)$, determine the projection of \vec{a} on \vec{b} .

8) Vectors \vec{u} and \vec{v} are such that $|\vec{u}| = 9$, $|\vec{v}| = 5$ and the angle between them is 45°. Determine the following:

a)
$$\vec{u} \cdot \vec{v}$$
 b) $|\vec{v} \downarrow \vec{u}|$

9) A box is pushed up a 10 m ramp with a force of 25 N applied at an angle of 45° to the horizontal ground. The box is then pushed along a horizontal platform for 12 m using the same force. If the ramp makes an angle of 15° with the ground, find the work done.

- 10) Prove that $\vec{u} \cdot \vec{u} = |\vec{u}|^2$ for any vector \vec{u} .
- 11) Explain why the dot product of two perpendicular vectors is 0.

12) Explain why the Associative Law, $(\vec{u} \cdot \vec{v}) \cdot \vec{w} = \vec{u} \cdot (\vec{v} \cdot \vec{w})$, is meaningless for the dot product.

13) State whether the following expressions are vectors, scalars or meaningless (operations in brackets are completed first).

a)
$$(\vec{a} \cdot \vec{b}) + (\vec{b} \times \vec{c})$$
 d) $(\vec{a} \cdot \vec{b}) \times \vec{c}$
b) $\vec{a} \cdot (\vec{b} \times \vec{c})$ e) $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$

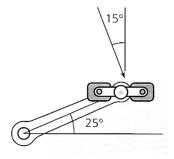
d)
$$(\vec{a} \cdot \vec{b}) \times \vec{c}$$

b)
$$\vec{a} \cdot (\vec{b} \times \vec{c})$$

e)
$$(\vec{a} \cdot \vec{b}) \vec{c}$$

c)
$$(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c})$$

14) For the vectors $\vec{a} = (5, 1, -2)$ and $\vec{b} = (3, -2, 7)$, determine each of the following.

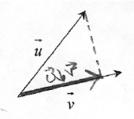

a)
$$\vec{a} \cdot \vec{b}$$

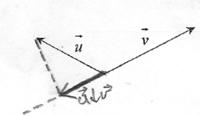
c)
$$\vec{a} \downarrow \vec{b}$$

a)
$$\vec{a} \cdot \vec{b}$$

b) $\vec{a} \times \vec{b}$

d)
$$|\vec{a} \downarrow \vec{b}|$$


- 15) Find m if (m, -2, 5) and (3, 2m, -5) are perpendicular vectors. (3 marks)
- 16) Two vectors $2\vec{a} + \vec{b}$ and $\vec{a} 3\vec{b}$ are perpendicular. Find the angle between \vec{a} and \vec{b} , if $|\vec{a}| = 2|\vec{b}|$.
- 17) Determine if the vectors $\vec{a} = (2, -1, 4)$, $\vec{b} = (3, 1, 4)$ and $\vec{c} = (1, -3, 4)$ are coplanar.
- 18) Determine the direction angles of the vector $\vec{u} = 3\vec{i} + 4\vec{j} 5\vec{k}$.
- 19) The points A(5, 3, 6), B(2, 7, 9) and C(8, 1, 7) are three vertices of a triangle. Find the area of this triangle.
- 20) Find the torque produced by a cyclist exerting a force of 115 N on a pedal in the position shown in the following diagram. The shaft of the pedal is 0.16 m long.


- 22) Given $\vec{u} = (a, b, c)$, $\vec{v} = (d, e, f)$ and $\vec{w} = (g, h, i)$, prove that $\vec{u} \times \vec{v} \cdot \vec{w} = \vec{u} \cdot \vec{v} \times \vec{w}$.
- 23) What is the minimum amount of work done in sliding a refrigerator 1.5 m across a kitchen floor against a frictional force of 150 N?
- 24) How much work is done by gravity in causing a 294 N rock to tumble 40 m down a hill at an angle of 38° to the ground?
- 25) If a 10 N force, acting in the direction of the vector (1, 1), moves an object from the point (-2, 1) to the point (5, 6), calculate the work done. The distance is in metres.

Answers

- 1) 39.2 N at an angle of 103.6° to the 27 N force.
- 2) 507.8 km/h on a heading of 033.8°
- 3) -102
- 4) 62.1°
- 6) a)

- 7) (4, -4)
- 8) a) $\frac{45\sqrt{2}}{2}$ b) $\frac{5\sqrt{2}}{2}$
- 9) 428.6 J
- 11) The angle between perpendicular vectors is 90°. Therefore, for perpendicular vectors \vec{u} and \vec{v} , we have $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos 90^{\circ}$, which equals 0, since $\cos 90^{\circ} = 0$.
- 12) The dot product of two vectors gives a scalar, which therefore cannot be dotted with a third vector.
- 13) a) meaningless b) scalar c) scalar d) meaningless e) vector
- 14) a) -1 b) (3, -41, -13) c) $\left(-\frac{3}{62}, \frac{1}{31}, -\frac{7}{62}\right)$ d) $\frac{\sqrt{62}}{62}$ ($\doteq 0.13$)
- 15) m = -25
- 16) 60°
- 17) coplanar
- 18) $\alpha = 64.9^{\circ}$, $\beta = 55.6^{\circ}$, $\gamma = 135^{\circ}$
- 19) $\sqrt{70}$ units²
- 20) 18.1 J
- 23) 225 J
- 24) 7240 J
- 25) $60\sqrt{2}$ J