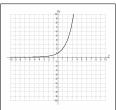
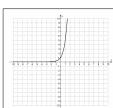
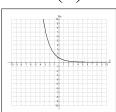
The Logarithmic Function

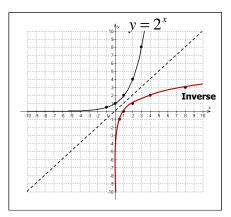

A little review...


Recall the appearance of the graph of an exponential function:


$$y = 2^x$$

$$y = 3^x$$

$$y = \left(\frac{1}{2}\right)^x$$

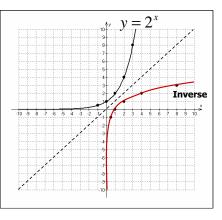


The Inverse of an Exponential Function

Consider the exponential function $y = 2^x$.

We can quickly sketch this function's graph.

We can also sketch the inverse of $y = 2^x$ by reflecting the graph of $y = 2^x$ in the line y = x (switching the x and y coordinates).



Is the inverse a function?

YES!

Notice that the graph of $y = 2^x$ has a horizontal asymptote along the *x*-axis and its inverse has a vertical asymptote along the *y*-axis.

Also, $y = 2^x$ has a y-intercept at 1 and its inverse has an x-intercept at 1.

Introducing the Logarithmic Function

Recall that the inverse of a function is a rule that "undoes" or "reverses" the effect of the function.

Now, with the exponential function $y = 2^x$, the *input* is the exponent and the *output* is the base 2 raised to that exponent.

We know that the inverse of $y=2^x$ has the equation $x=2^y$. Notice that for the inverse, the output y is the exponent.

For $x = 2^y$, we can write y as a function of x using the *logarithmic function*, $y = \log_2 x$.

Some important points...

The expression $\log_a x$ means "the **exponent** that must be applied to base a to obtain the value of x."

For a function $y = a^x$, the equation $x = a^y$ is called the *exponential form* of the inverse and the equation $y = \log_a x$ is called the *logarithmic form* of the inverse.

 $\log_a x$ is read "the logarithm of x to the base a" or simply "log x base a."

Some examples...

1) Write the inverse of $f(x) = 4^x$ in logarithmic form.

$$f(x) = 4^{x}$$
 $y = 4^{x}$

Note that it is not necessary to write the intermediate steps!

 $x = 4^{y}$
 $y = \log_{4} x$

 \therefore the inverse is $f^{-1}(x) = \log_4 x$.

2) Write $y = \log_3 x$ in exponential form.

$$y = \log_3 x$$

Think: y is the exponent that I need to apply to 3 in order to get x .

 $x = 3^y$

- 3) Evaluate each of the following.
 - a) $\log_2 8$ What exponent do I need to apply to a base of 2 to get 8?
 - b) $\log_3 81$ c) $\log_7 1$ d) $\log_{\frac{1}{2}} \frac{1}{32}$ = 4 = 0

Question for Discussion

How could we sketch the graph of

$$y = \log_3 x$$
?