indeterminate forms:

We have seen how L'Hôpital's Rule can be helpful with evaluating limits for which substitution leads to the indeterminate form $\frac{0}{0}$. In this lesson, we will look at dealing with other indeterminate forms. Specifically, we will consider how we can evaluate limits when substitution gives the following

$$\frac{\infty}{\infty}$$
, $\frac{\infty}{0}$, $\infty - \infty$, 1^{∞} , 0^{0} , ∞^{0}

To get a sense of why above are considered indeterminate forms, consider the following two limits:

$$\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x = \underline{\hspace{1cm}}$$

Notice that in each case above, we are evaluating the limit of a function of the form $h(x) = f(x)^{g(x)}$, where $\lim_{x \to \infty} f(x) = 1$ and $\lim_{x \to \infty} g(x) = \infty$, yet these two limits give different results.

Example

Evaluate $\lim_{x\to\infty} \frac{\ln x}{2\sqrt{x}}$

Indeterminate Form:

Example

Evaluate
$$\lim_{x \to \frac{\pi}{2}} \frac{\sec x}{1 + \tan x}$$

Indeterminate Form:

Example

Evaluate
$$\lim_{x\to\infty} \left(x \sin \frac{1}{x} \right)$$

ndeterminate Form:	

Example

Evaluate
$$\lim_{x\to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right)$$

ndeterminate Form:	
	J

Example

Evaluate
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$$

Indeterminate Form:

Exam	bl	e
LAGIII	P:	•

Evaluate	lim	x '
	$x\rightarrow 0^+$	

Indeterminate Form:

Example

Evaluate
$$\lim_{x\to\infty} x^{\frac{1}{x}}$$

Indeterminate Form:	Indeterminate Form:
---------------------	---------------------