1) Determine the average rate of change of the function $f(x) = 3x^2 - 2x + \sqrt{x}$ on the interval $4 \le x \le 9$.

$$AROC = \frac{\Delta f(x)}{\Delta x}$$

$$= \frac{f(9) - f(4)}{9 - 4}$$

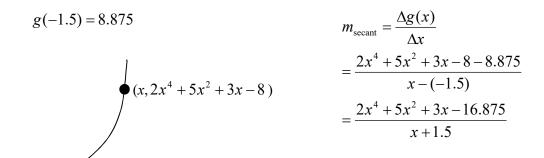
$$= \frac{228 - 42}{5}$$

$$= \frac{186}{5}$$

$$= 37.2$$

 \therefore the average rate of change is 37.2.

- 2) Consider the function $g(x) = 2x^4 + 5x^2 + 3x 8$.
 - a) Determine the instantaneous rate of change of the function g(x) at the point where x = -1.5.



Approaching x = -1.5 from the left: Approaching x = -1.5 from the right:

x	m _{secant}
-1.51	-39.32120199
-1.501	-39.032012
-1.5001	-39.0032
-1.50001	-39.00032

x	m _{secant}
-1.49	-38.681198
-1.499	-38.968012
-1.4999	-38.9968
-1.49999	-38.99968

: the instantaneous rate of change is approximately -39.

b) Determine the equation of the tangent line to g(x) at the point where x = -1.5.

$$y = mx + b$$

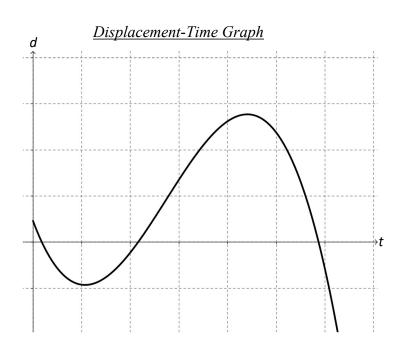
$$y = -39x + b$$

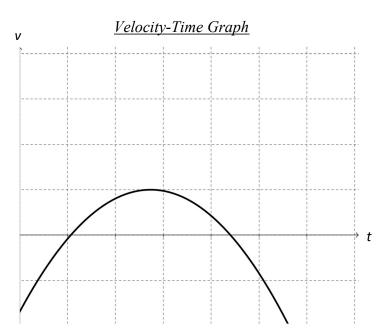
$$8.875 = -39(-1.5) + b$$

$$b = -49.625$$

 \therefore the equation of the tangent is y = -39x - 49.625

3) A displacement-time graph is shown below. Sketch the corresponding velocity-time graph.





4) Does the graph of $y = -\frac{1}{x}$ have any points at which the instantaneous rate of change is negative? Explain.

As shown on the right, the graph of $y = -\frac{1}{x}$ is a vertical reflection of the graph of $y = \frac{1}{x}$. Since this function never decreases, it never has a negative tangent slope. Therefore, the function $y = -\frac{1}{x}$ never has a negative instantaneous rate of change.

