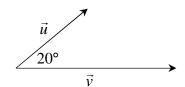
42

Know	/ 12	APP	/ 12	INQ	/ 12	COMM	/6


MCV4UP - Unit 10 - Introduction to Vectors

TEST

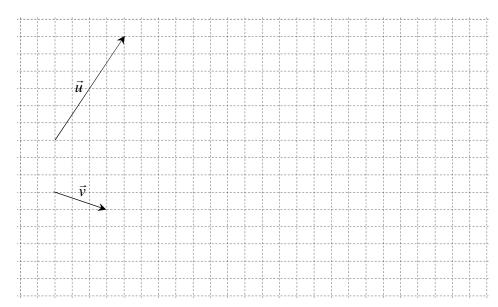
ROUND ALL FINAL ANSWERS TO THE NEAREST TENTH, UNLESS STATED OTHERWISE.

- 1) Given the points A(2,-3,17) and B(-5,22,-11), find \overrightarrow{AB} in algebraic (component) form. (K-2 marks)
- 2) If $\vec{u} = (2, -5)$ and $\vec{v} = (-1, 4, 10)$, calculate the exact value of $|\vec{u}|$ and $|\vec{v}|$. (K 2 marks)

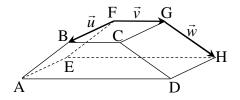
3) For vectors \vec{u} and \vec{v} shown below, $|\vec{u}| = 5$ and $|\vec{v}| = 8$. Draw the vector $\vec{u} - \vec{v}$ and calculate $|\vec{u} - \vec{v}|$. (K - 2 marks)

4) If $|\vec{u}| = 5$, $|\vec{v}| = 12$ and $|\vec{u} + \vec{v}| = 13$, show that \vec{u} and \vec{v} must be perpendicular. (K - 2 marks)

5) Let $\vec{u} = (2,3,-5)$ and $\vec{v} = (-4,-6,5)$. (K-4 marks)


a) Determine a vector equivalent to $2\vec{u} - 3\vec{v}$.

c) State whether or not \vec{u} and \vec{v} are collinear.


b) Express $\vec{u} - \vec{v}$ in terms of the unit vectors \vec{i} , \vec{j} , and \vec{k} .

d) Determine the exact value of $|\vec{u} + \vec{v}|$.

6) Two vectors \vec{u} and \vec{v} are shown on the grid below. Accurately draw the vector $\frac{1}{2}\vec{u} - 3\vec{v}$. (A - 2 marks)

7) In the trapezoidal prism shown below, $BC = \frac{1}{3}AD$. Express each of the following in terms of \vec{u} , \vec{v} and \vec{w} . (A - 4 marks)

- \overrightarrow{AG}
- BA

8) Determine a vector that has the same direction as $(2, -6, -9)$ and a magnitude of 5. Leave your answer in exact form. $(A - 3 \text{ marks})$
9) Express the vector $\vec{p} = (44, -26)$ as a linear combination of $\vec{q} = (3, -2) = \text{and } \vec{r} = (-7, 4)$. $(A - 3 \text{ marks})$
10) Consider the vectors $\vec{u} = (8,1,6)$, $\vec{v} = (-1,3,4)$ and $\vec{w} = (5,1,-1)$. Determine if the three vectors are coplanar and whether or not they span R ³ . $(I - 6 \text{ marks})$
are coplanar and whether or not they span K . $(I - 0 marks)$
Are the three vectors coplanar? Yes No (check one)
Does the set of vectors span \mathbb{R}^3 ? Yes No (check one)
11) Circle all of the following vectors that are perpendicular to $(6, -4)$. $(I - 2 marks)$
(-6,4) $(12,18)$ $(-4,6)$ $(4,6)$ $(-4,-6)$ $(24,-16)$ $(-8,12)$ $(-2,-3)$

Consider the points $A(2,3,7)$, $B(1,7,15)$, $C(-4,3,17)$ and $D(-3,-1,9)$. Use vectors to prove that quadrilateral $ABCD$ is a parallelogram, but <u>not</u> a rhombus. (Note: a rhombus is a parallelogram in which all sides have equal length.) $(I-4 \ marks)$
How many vectors are needed to span R^2 ? What condition(s) must these vectors meet in order to span R^2 ? $(C-2 \ marks)$
Number of vectors needed: Condition(s):
How many vectors are needed to span R^3 ? What condition(s) must these vectors meet in order to span R^3 ? $(C-2 \ marks)$
Number of vectors needed: Condition(s):
During a deep discussion about 3-space, Katerina and Alberto were considering the vectors $\vec{u} = (4,0,5)$, $\vec{v} = (8,0,3)$ and $\vec{w} = (9,1,1)$. Without writing anything down, Katerina quickly claimed that the three vectors are coplanar and Alberto immediately responded that the three vectors are not coplanar. Who is correct? Explain. $(C-2 \text{ marks})$