MULTIPLYING A VECTOR BY A SCALAR ## Multiplying a Vector by a Scalar For the following vector \vec{v} , find the sum $\vec{v} + \vec{v} + \vec{v}$. As you might expect, $\vec{v} + \vec{v} + \vec{v} = 3\vec{v}$, where $3\vec{v}$ is a vector in the same direction as \vec{v} with 3 times the magnitude. \vec{v} A vector $-2\vec{v}$ would be in the opposite direction to \vec{v} with twice the magnitude. The operation of multiplying a vector by a scalar is called **scalar multiplication**. ### **Scalar Multiplication** Let \vec{v} be a vector and let k be a scalar. Magnitude • $k\vec{v}$ is a vector that is |k| times as long as \vec{v} . Direction - If k > 0, $k\vec{v}$ has the _____ direction as \vec{v} . - If k < 0, $k\vec{v}$ has the _____ direction of \vec{v} . - If k = 0, \vec{kv} is the _____ Note the similarities between multiplication in arithmetic and scalar multiplication of vectors. ## Example For the given vectors \vec{a} and \vec{b} , sketch $2\vec{a}$, $-3\vec{b}$ and $\frac{1}{2}\vec{b}$. Two vectors are said to be **collinear** if they lie on a straight line when arranged tail-to-tail. Notice that if one vector is a scalar multiple of another vector, the two vectors will be collinear. What about the zero vector? ### **Linear Combinations of Vectors** Scalar multiplication of vectors is often combined with vector addition and subtraction to give **linear combinations**. #### **Linear Combinations of Vectors** A linear combination of the vectors \vec{u} and \vec{v} has the form $a\vec{u} + b\vec{v}$, where a and b are scalars. # Example For the given vectors \vec{a} and \vec{b} , sketch $-3\vec{a} + \frac{1}{2}\vec{b}$. ## Example \overrightarrow{ABCD} is a parallelogram with P and Q the midpoints of AB and DA respectively. If $\overrightarrow{u} = \overrightarrow{BP}$ and $\overrightarrow{v} = \overrightarrow{AQ}$, express the following vectors in terms of \overrightarrow{u} and \overrightarrow{v} . - a) \overrightarrow{CD} - b) \overrightarrow{BD} - c) \overrightarrow{PD} - d) \overrightarrow{AC} If \vec{u} and \vec{v} are non-zero, non-collinear vectors, then any vector \overrightarrow{OP} in the plane containing \vec{u} and \vec{v} can be expressed as a unique linear combination of \vec{u} and \vec{v} .