Polynomial Functions An Introduction ### DEFINITION OF A POLYNOMIAL IN ONE VARIABLE A polynomial is an expression of the form $$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$ where - 1) *n* is a whole number. - all of the exponents are whole numbers (0, 1, 2, 3, etc.) - 2) the coefficients $a_0, a_1, a_2, ..., a_n$ are real numbers. #### SOME EXAMPLES | These are polynomial expressions. | These are not polynomial expressions. | |--|---------------------------------------| | $3x^2-5x+3$ | $\sqrt{x} + 5x^3$ | | $-4x + 5x^7 - 3x^4 + 2$ | $\frac{1}{2x+5}$ | | $\frac{2}{5}x^3 - 3x^5 + 4$ | $6x^3 + 5x^2 - 3x + 2 + 4x^{-1}$ | | $\sqrt{4}x^3 - \frac{\sqrt{5}}{3}x^2 + 2x - \frac{1}{4}$ | $\frac{3x^2 + 5x - 1}{2x^2 + x - 3}$ | | 3x - 5 | $4^{x} + 5$ | | -7 | $\sin (x - 30)$ | | -4x | $x^2y + 3x - 4y^{-2}$ | | $(2x-3)(x+1)^2$ | $3x^3 + 4x^{2.5}$ | - A polynomial can use a variable other than x. Example: $2.4t^3 + 7t^2 - 5.5t + 1$ - A polynomial can contain more than one variable. Example: $3x^2 + 2t + 5x^3t^2$ # SOME MORE TERMINOLOGY #### DEGREE OF A POLYNOMIAL The degree of a polynomial is the value of the highest exponent on the variable. EXAMPLE: $$7x^3 - 12x^2 + 5x - 8$$ Degree is 3. #### LEADING COEFFICIENT The leading coefficient of a polynomial is the coefficient of the highest power of the variable. $$7x^3 - 12x^2 + 5x - 8$$ Leading coefficient is is 7 . ### POLYNOMIAL FUNCTION A polynomial function is a function for which the rule is a polynomial. EXAMPLE: $$f(x) = 7x^3 - 12x^2 + 5x - 8$$ ## Name that degree and leading coefficient! $$-8x^4 - 2x^3 + x + 1$$ Degree: 4 Leading Coefficient: 8 $$y = 5x^3 + 9x + x^4 - 3x^2 - 8$$ Degree: 4 Leading Coefficient: 1 $$f(x) = 1.5x^3 + 0.8x^5 - 4.1x^7$$ Degree: 7 Leading Coefficient: -4.1 #### EXAMPLES OF POLYNOMIAL FUNCTIONS | DEGREE | Common
Name | EQUATION EXAMPLES | GRAPH EXAMPLES | |--------|----------------|--|----------------| | 0 | Constant | y = 3 $y = -5$ | | | 1 | Linear | y = x $y = -2x + 5$ | | | 2 | Quadratic | $y = x^2$ $y = -2x^2 + 5x + 3$ | | | 3 | Cubic | $y = x^3$ $y = x^3 - x^2 - 4x + 1$ | | | 4 | Quartic | $y = x^{4}$ $y = -x^{4} + 4x^{3} - 3x + 7$ | | | 5 | Quintic | y = x5 $y = 1.3x5 + x4 - 10x3 - 4.2x2 + 10x + 2$ | | How high can we go with the degree of a polynomial function? - there aren't really common names for high-degree polynomials. - we'll spend most of our time working with degree 5 or less. I wonder how the coefficients affect the shape of the graph... ### DESCRIBING POLYNOMIAL FUNCTIONS #### TURNING POINTS - When a function switches from increasing to decreasing, or vice versa, we get a turning point. - · Turning points are higher or lower than all nearby points. - Turning points are also known as local maximum points or local minimum points. ### OTHER PROPERTIES FOR DESCRIBING POLYNOMIAL FUNCTIONS - · Domain and Range - · Absolute extreme values • Zeros - Symmetry - y intercept - · End behaviour ### EXAMPLE: Note: We will look more closely at end behaviour, zeros and turning points in the next lesson. Domain: $\{x \in \Re\}$ Range: $\{y \in \Re\}$ Zeros: -3.5, 0, 3.5 v-intercept: 0 Interval(s) of increase: x < -2, x > 2 Interval(s) of decrease: -2 < x < 2 Absolute Maximum Value: None Absolute Minimum Value: None There is local maximum point at -2 with a local maximum value of 4 . There is local minimum point at ____ with a local minimum value of -4. Symmetry: Odd, since g(-x) = -g(x)End Behaviour: As $x \to \infty$, $y \to \infty$ As $x \to -\infty$, $y \to -\infty$ ### FINITE DIFFERENCES Recall that the first differences of a linear function are equal. $$y = 5x - 12$$ | x | У | | |---|-----|---------------| | 0 | -12 | 5 | | 1 | -7 | 5 5 | | 2 | -2 | | | 3 | 3 | 2^{5} | | 4 | 8 | \geq 5 | | 5 | 13 | $\geqslant 5$ | What do you think will happen when the function is cubic? The **third differences** will be equal! In general, for a polynomial function of degree n, the nth differences are equal. As we continue our investigation of rates of change, the reason why this relationship exists will become apparent. Similarly, the second differences of a quadratic function are equal. $$y = 3x^2 - 19x + 12$$ | X | y | | |---|-----|------------------| | 0 | 12 | -16 | | 1 | -4 | 3-16
-10
6 | | 2 | -14 | | | 3 | -18 | | | 4 | -16 | | | 5 | -8 | 8 | $y = 5x^3 - 7x^2 + 2x - 4$ 0 -4 1 -4 2 12 3 74 212 4 5